Japanese Plan: PRISM/PRIME

Yoshitaka Kuno Osaka University

September 16th, 2006 Mu2E workshop at Fermilab our new logo

Outline

- Why Aim at s Sensitivity of 10⁻¹⁸?
- What is PRISM? What is PRIME?
- PRISM R&D and Design
- Prospects
- Summary and Outlook

Why Aim for a Sensitivity of 10^{-18} ?

SUSY-GUT Prediction for µ-e Conversion (for SUSY parameters by LHC)

A. Masiero et al.

LHC, SUSY and Charged Lepton Mixing

LHC, SUSY and Charged Lepton Mixing

If LHC finds SUSY

LFV search would become important, since the slepton mixing matrix should be studied.

- SUSY-GUT
- SUSY Seesaw models.

LHC, SUSY and Charged Lepton Mixing

If LHC finds SUSY

LFV search would become important, since the slepton mixing matrix should be studied.

- SUSY-GUT
- SUSY Seesaw models.

from A.Masiero et al.

If LHC not find SUSY

LFV search would be sensitive to multi-TeV SUSY.

What is PRISM?

What is PRIME?

What is PRISM?

- PRISM is a next-generation muon beam facility, considered in Japan.
- PRISM stands for Phase Rotated Intense Slow Muon source.
- PRISM has features of
 - high intensity (pion solenoid capture)
 - high luminosity (narrow beam energy spread)
 - high purity (no pion contamination).

- PRISM consists of
 - pion capture section
 - superconducting solenoid magnets
 - mag. field of from 6 T to 20 T (depends on technology and cost)
 - transport section
 - curved solenoid
 - muon storage ring section
 - a FFAG ring with large acceptance.

PRISM Layout

There are commonality and difference from MELC/MECO/Me2E.

... To Make Narrow Beam Energy Spread

- A technique of phase rotation is adopted.
- The phase rotation is to decelerate fast beam particles and accelerate slow beam particles.
- To identify energy of beam particles, a time of flight (TOF) from the proton bunch is used.
 - Fast particle comes earlier and slow particle comes late.

- Proton beam pulse should be narrow (< 10 nsec).
- Phase rotation is a wellestablished technique, but how to apply a tertiary beam like muons (broad emittance)?

Phase Rotation for a Muon Beam

Use a muon storage ring?

- (1) Use a muon Storage Ring:
 - A muon storage ring would be better and realistic than a linac option because of reduction of # of cavities and rf power.
- (2) Rejection of pions in a beam:

 At the same time, pions in a beam would decay out owing to long flight length.

Which type of a storage ring?

- (1) cannot be cyclotron, because of no synchrotron oscillation.
- (2) cannot be synchrotron, because of small acceptance and slow acceleration.

Fixed field Alternating Gradient Ring (FFAG)

PRISM Specifications

- Intensity:
 - 10¹¹-10¹² muons/sec.
 - for a MW proton beam power
- Central Momentum :
 - 68 MeV/c
 - lower than 77 MeV/c
- Momentum Spread :
 - ±3% (from ±30% after phase rotation.)
- Beam Repetition
 - 100 1000 Hz
 - due to repetition of kicker magnets of the muon storage ring.

- Beam Energy Selection
 - 68 MeV/c ±3%
 - at extraction of the muon storage ring.

PRIME Detector

PRIME=PRISM Mu E conversion detector

- High single rates in the detector could cause false tracking, mimicking the signal.
- Sources of the detector rates
 - electrons from bound muon decays, and others.
- MECO:
 - a straight solenoid
 - P_T cut only (P_T>55 MeV/c)
 - Rates of tracking wire chambers ~ 500 kHz/wire
- PRIME:
 - many muons/bunch
 - beam repetition 100-1000Hz

- Curved Solenoid
- vertical drift is used for momentum and charge selection.
- T-type trackers

Rejection of Electrons from Bound Muon Decay

threshold	rate with 100 bunches/sec	rate with 1000 bunches/sec
70 MeV	700 hits /plane/bunch	70 hits/plane/bunch
80 MeV	20 hits /plane/bunch	2 hits/plane/bunch
90 MeV	0.2 hits /plane/bunch	0.02 hits/plane/bunch

from BMD only

Muon Yield Simulation with MARS and GEANT

- a 40-GeV proton beam on 60 cm-long graphite target under 6 T.
- with momentum selection (68MeV/c+-30%)
- with FFAG-acceptance (40π mm rad in horizontal, 6.5π mm rad in vertical)
- 6x10¹⁰ μ⁻/sec, assuming 0.6MW beam power

Muon Yield Estimation at PRISM

based on the PRISM FFAG acceptance of 40 mm rad in horizontal and 6.5 mm rad in vertical and a muon stopping target of 1/10 thickness of MECO.

Cases	Proton Beam Power	Target Material	Pion Capture Magnetic Field	Muon Yield (/sec)
1	0.6 MW	Graphite	6 T	7x10 ¹⁰
2	0.6 MW	Graphite	16 T	2x10 ¹¹
3	0.6 MW	Tungsten	6 T	2x10 ¹¹
4	0.6 MW	Tungsten	16 T	5x10 ¹¹
5*	4 MW	Mercury	6 T	1x10 ¹²
6*	4 MW	Mercury	16 T	3x10 ¹²

from the PRISM/PRIME LOI (2006)

Muon Yield Estimation at PRISM

based on the PRISM FFAG acceptance of 40 mm rad in horizontal and 6.5 mm rad in vertical and a muon stopping target of 1/10 thickness of MECO.

Cases	Proton Beam Power	Target Material	Pion Capture Magnetic Field	Muon Yield (/sec)
1	0.6 MW	Graphite	6 T	7x10 ¹⁰
2	0.6 MW	Graphite	16 T	2x10 ¹¹
3	0.6 MW	Tungsten	6 T	2x10 ¹¹
4	0.6 MW	Tungsten	16 T	5x10 ¹¹
5*	4 MW	Mercury	6 T	1x10 ¹²
6*	4 MW	Mercury	16 T	3x10 ¹²

from the PRISM/PRIME LOI (2006)

PRISM/PRIME Sensitivity for μ -e conversion

$$B(\mu^- + Ti \to e^- + N) > 10^{-18}$$

preliminary

	PRIME
proton beam power	0.6 MW
muon intensity	2 x 10 ¹¹ /sec
acceptance	0.22
time window	100%
running period	5 year
Single Event Sensitivity	6x10 ⁻¹⁹

Work in Progress

SINDRUM-II (at PSI)

unpublished

$$B(\mu^{-} + Au \rightarrow e^{-} + Au) < 7 \times 10^{-13}$$

SINDRUM-II (at PSI)

unpublished

100

momentum (MeV/c)

There is one background event above the signal region, and it is speculated that it might come from

pion contamination in a beam.

1

80

PRISM Features to Reject Backgrounds

- (1) Long muon flight length
 - about 40 m circumference x
 5-6 turns at the muon storage ring (PRISM-FFAG)
 - pion survival rate of <10⁻²⁰
- (2) Narrow muon beam energy spread
 - goal: +- 3 %
 - by phase rotation at the PRISM-FFAG ring
- (3) Muon beam energy selection before the detector

- momentum slit after the PRISM-FFAG ring
- 68 MeV/c +- 3% (not 104 MeV)
- (4) Beam extinction at muons
 - Kicker magnets of the PRISM-FFAG ring
 - no proton extinction needed
- (5) Small duty factor of detection
 - ~ 10⁻⁴ for a detection of 1
 µs with 100 Hz repetition

Background Consideration

as simple as possible

Source	How to Eliminate	Comments
Bound muon decays	(2) energy spread	1/10 of the MECO target
Radiative pion capture	(1) flight	no pions
Beam electrons	(3) momentum cut	
Muon decay in flight	(3) momentum cut	P < 77 MeV/c
Decayed background	(4)	
Cosmic rays	(5)	no active cosmic ray shield needed.

PRISM R&D and Design

Design of Pion Capture and Transport Sections

- Pion Capture Superconducting solenoid magnet
 - for (0.6) MW beam power
 - 6T magnetic field for the initial stage.
 - Inner bore (R=15cm)
 - aluminum-stabilized coil
 - 5-20 cm thick
 - 140 cm length
 - Radiation shield
 - tungsten (cooled)
 - 25-35 cm radial thickness
- Transport Solenoids
 - Pancakes ?

- optimization of # of coils.
- Support from the KEK cryogenic group (with Prof. A. Yamamoto)
 - a monthly meeting

PRISM FFAG Ring R&D

PRISM FFAG Lattice Design

- k=5(4.6-5.2)
- F/D(BL)=8
- r0=6.5m for 68MeV/c
- half gap = 15cm
- mag. size 110cm @ F center
- Triplet
 - θ_F =4.40deg
 - θ_D =1.86deg
- tune
 - h: 2.86
 - v: 1.44
- acceptance
 - h : 140000π mm mrad
 - --> 40000π mm mrad
 - v : 6500π mm mrad

PRISM FFAG R&D is Going...

PRISM FFAG R&D is Going...

PRISM FFAG R&D is Going...

Prospects

J-PARC = Japan Proton Accelerator Research Complex

PRISM/PRIME at J-PARC

J-PARC = Japan Proton Accelerator Research Complex

PRISM/PRIME at J-PARC

J-PARC = Japan Proton Accelerator Research Complex

PRISM/PRIME at J-PARC

J-PARC Beam Power Improvement Schedule

One Strategy

• Phase I:

- build PRISM+PRIME at the Research Center for Nuclear Physics (RCNP),
 Osaka University. There is a 400 MeV proton cyclotron with a few micro A.
- test PRISM+PRIME.
- Phase II:
 - Bring PRISM+PRIME to a high intensity proton driver to carry out an experiment.
- funding requests in JFY2005 and JFY2006 failed.
- New strategy is needed!

RCNP at Osaka University

History and Prospect

- January 2003: LOIs of PRISM (LOI-24) and PRIME (LOI-25) were submitted to KEK.
- January, 2006: LOI of PRISM/PRIME were submitted to J-PARC PAC.
- Fall, 2006: review committee on LFV physics at KEK
- January, 2007 : J-PARC PAC ?

Summary and Outlook

- PRISM/PRIME is a site-independent muon facility and a detector.
- PRISM needs a high intense proton beam (>0.6 MW).
- PRISM has the following features.
 - no pion backgrounds in a beam.
 - no beam related backgrounds (beam electrons, anti-protons...)
 - no proton extinction is needed.
 - no cosmic ray background (10⁴ suppression).
 - narrow beam energy spread.
- The PRIME detector has capability to reduce detector rates even with 100-1000 Hz beam repetition.
- However, more studies and R&D are needed.
- Works (including funding requests) in Progress.....

End of My Slides